
Lightweight Static Analysis for Data Race Detection
in Operating System Kernels

Andrianov Pavel
Institute for System Programming

Russian Academy of Sciences,
Email: andrianov@ispras.ru

Khoroshilov Alexey
Institute for System Programming

Russian Academy of Sciences,
Email: khoroshilov@ispras.ru

Mutilin Vadim
Institute for System Programming

Russian Academy of Sciences,
Email: mutilin@ispras.ru

Abstract—The paper presents an approach to lightweight
static data race detection. It takes into account the specifics of
operating system kernels, such as complex parallelism and kernel
specifics synchronization mechanisms. The method is based on the
Lockset one, but it implements two heuristics that are aimed to
reduce amount of false alarms: a memory model and a model of
parallelism. The main target of our research and evaluation is
operating system kernels but the approach can be applied to the
other programs as well.

Keywords. static analysis, data race, operating system kernel,
shared data

1. INTRODUCTION

Despite a great progress in the field of software verification,
bugs associated with parallel execution remain among the
most difficult ones to identify. Moreover, concurrency bugs are
rather numerous, for example, on average they make up about
20% of all bugs across file systems in the Linux kernel [1].
The most common causes of bugs associated with parallel
execution of operating system kernel are data races in which
simultaneous access to shared data from multiple threads takes
place. In particular, analysis of bug fixes for a year of Linux
kernel development has shown that bugs associated with data
races constitute the most numerous class and make up 17% of
typical bugs [2].

There are two ways for finding data races automatically:
dynamic analysis and static analysis. Dynamic analysis tech-
niques allow to obtain a relatively small percentage of false
alarms. Examples of tools, implementing dynamic methods,
are Eraser [3], RaceHound [4] and DataCollider [5]. They are
able to find potential data races only at those paths that occur
during the actual execution of a program. A data race requires
two almost simultaneous accesses to the same data which
complicates its detection. Tools, which use the method of
vector clocks, can deal with two accesses occurred at different
times, but they are sensitive to order of operations. Also it is
known that a significant number of execution paths are difficult
to reproduce in a test environment.

Methods of static analysis have the other problems. The
heavyweight static analysis is precise but requires a lot of time.
In case of data race detection the total number of places, where
data race can occur, is too large. There were some experiments
with verification of kernel modules source code [8]. Their
results showed that heavyweight analysis does not scale on
such code. There is a combinatorial explosion of states, so even

for small modules the amount of required time and memory
was huge.

The methods of lightweight static analysis, e.g. method
implemented in the Locksmith tool [6], operate very fast, but
the number of false alarms is usually very high. For Locksmith
the average number of false alarms was 73% on some POSIX
applications and about 96% on several device drivers [7]. The
existing methods do not take into consideration some specifics
of operating system kernels described below, so the majority
of drivers and especially the kernel itself are very difficult to
analyze.

In operating system kernels parallelism is more complex,
because they are event driven. Many kernel functions can be
executed in parallel and it is difficult to define when parallel
execution can start. Also in operating system kernels there are
additional kernel specific synchronization mechanisms such as
disabling of interrupts and scheduling. One more feature is
active usage of pointer arithmetic. As a result finding data
races in operating system kernels is more difficult than in user
space.

In this paper we suggest a new method of lightweight static
analysis for data race detection which will be easy to scale
to large amounts of source code keeping false alarms rate at
reasonable level and will take into consideration the specifics
of operating system kernels.

The rest of the paper is organized as follows. In Section 2
required definitions are given. Section 3 describes the idea
of the proposed method. After that the idea of Configurable
Program Analysis (CPA) is given. The implementation of our
method is discussed in Section 5. Section 6 talks about the
integration of the implementation into LDV Tools [11]. In
Section 7 we speak about the results, then in Section 8 - about
related work. In the conclusion future plans are presented.

2. DEFINITIONS

In this paper a term thread is used to represent an
independent flow of execution in operating system kernel,
e.g. hardware interrupt handling and executing system calls
on behalf of user space thread. If some system call can be
interrupted by a hardware interruption, we consider them to
be executed in parallel.

A lock is an object used for concurrent memory access
exclusion. If some lock is acquired from one thread then
another thread, trying to acquire the same lock, can not

continue its execution until the lock is released. For example,
mutexes and spinlocks are typical examples of such locks.
We consider kernel specific synchronization mechanisms such
as disabling of interrupts and scheduling as specific locks as
well. Function irq_disable() disables interrupts and thus
restricts any parallel execution, so we consider that imagine
global lock irq_disable is acquired. Some locks can be
acquired several times, in this case recursive acquiring takes
place.

Shared data — an area of memory which is available
from several threads. In C language shared data is presented
by global variables and pointers to memory which is accessible
from several threads via legal C constructions. It is important
to note that sharedness is a characteristic of time. A local data
can become shared at one point and return its local status later.

Usage of data — read or write data access.

Data race is a situation when there are two concurrent
usages of the same shared data and at least one of access is
write. Data race does not always lead to a bug (e.g. access to
a statistics counter), but it is a symptom of it. These cases are
called benign races.

3. METHOD OF LIGHTWEIGHT DATA RACE DETECTION

Our method is based on Lockset one[3]. This method
maintains set C(υ) of potential locks for every shared data
υ. This set contains those locks that have protected υ for the
computation so far. Lock l is in C(υ) if in the computation up
to that point every thread that has accessed υ was holding l at
the moment of the access. C(υ) is initialized by all possible
locks. When the variable is accessed, C(υ) is updated with the
intersection of C(υ) and the set of locks held by the current
thread. If C(υ) becomes empty it indicates a potential data
race.

To describe the algorithm of finding data races we should
answer following questions:

• When does parallel execution start?

• What is data?

• What data is considered to be the same?

• What are the locks and what are the rules of operations
with them?

• What locks are considered to be the same?

Lockset uses points of threads creation to define when
parallel execution starts. For operating system kernels it is
more difficult to determine when parallel execution begins. We
consider that every system call and interrupt handler could be
executed in parallel with other ones including itself. The actual
interrelation between them is more complex. The thread model
in our method is represented by main function, which contains
calls of all system calls and interrupt handlers.

Lockset is implemented in the dynamic tool, which oper-
ates with run-time memory locations. Our method considers
variables and fields of structures as an unit of data by default.
There are situations when the accesses to different structure
fields should be guarded by locks. For example, we have
structure type representing the shared linked list with fields

next and prev. There are two accesses: to the field next
of one instance of structure and to the field prev of another.
All static methods which operate with memory locations will
have problems in such case, because it is always difficult to
understand that two different pointers may points to the same
memory location. In our method we can annotate that accesses
to these fields are the accesses to the whole list.

As far as Lockset operates with memory locations, the data
is shared, if there are two accesses to the same address. For
operating system kernels it is difficult to build the data flow
graph because of pointer arithmetic and massive parallelism.
So this method does not work as well as for user-space
programs. In our method the equality of memory locations
follows only from the syntax rules. A global pointer is always
considered to be pointed to the same memory area. So does
a local pointer in a given function. Two structure fields are
considered to be pointed to the same memory location if the
type of the structure is the same and the names of these fields
are equal. It is important to note, that in the name of structure
is not considered. So, if structure pointers A and B have the
same type, accesses A->x and B->x will be considered to be
pointed to the same memory location. If structures A and B
are not related this suggestion leads to the false alarm. For this
reason there are 18% of all false alarms.

Lockset considers the lock as an object, which can be
acquired. This method supports only two operations with it:
acquire and release. Our method allows to specify a lock: the
acquiring and releasing functions (several ones are possible)
and its arguments, recursiveness. The equality of locks follows
from equality of object names (variables) in the both of
methods.

It is important to note, that our method is interprocedural
and explores each path separately as long as they result in
different states.

4. CONFIGURABLE PROGRAM ANALYSIS

The suggested method implementation is based on con-
figurable program analysis (CPA) [9]. It is briefly described
below.

Configurable program analysis can be combined of several
algorithms offering different types of analysis. In addition,
it is allowed to configure the analysis algorithm choosing
the merging operator and a way to check the termination of
analysis.

Configurable program analysis (D, transfer,
merge, stop) consists of abstract domain D, transfer
relation transfer, merging operator merge and stop
operator stop. These four components configure the analysis
algorithm and affect an analysis accuracy and resources
consumption.

Abstract domain D specifies a set of abstract states. Every
abstract state corresponds to its abstract value, i.e. set of
concrete states which it represents. A concrete state of a
program is a mapping of program variables into values of these
variables.

Transfer relation transfer determines for each abstract
state e potential following abstract states {e’}, where each

transition is marked by an edge of the control flow graph
(CFG).

Operator merge allows to combine information from
several paths of analysis. It determines, when two nodes of
the reachability tree are merged into one and when they are
analyzed individually. In classic lightweight analysis merging
always happens, when nodes refer to the same point in the
program. In traditional heavyweight analysis nodes are never
merged.

Operator stop checks whether a current state is covered
by a given set of states (already traversed state). It determines
when consideration of a path is terminated in a current node.
In classic lightweight analysis stop occurs when there is no
abstract state including new concrete states, i.e. a fixed point
is reached. In heavyweight analysis stop occurs when one set
of concrete states corresponding an abstract state is a subset
of states corresponding to some other abstract state.

Fig. 1. Simple CPA configuration tree

Let us look at one example of the CPA configuration tree
(Fig. 1). We have three CPAs. The main is CompositeCPA. It
includes LocationCPA and CallstackCPA.

State of LocationCPA contains a node of CFG, e.g. a
line number of source code. Hence, its abstract domain is
a set of possible nodes. Transfer relation changes a
line number of current state to a line number of an edge
successor. In this CPA merge operator never merges states.
Stop occures only if the CPA has already analyzed current
state before.

State of CallstackCPA consists of a function callstack. If
we call a new function we push its name at the top of the
stack. If we return back we pull its name from the stack. It is
the work of transfer relation. Stop and merge are the same
as the previous ones.

The aim of CompositeCPA is to combine CPAs considered
above. Its abstract domain is a cartesian product of Loca-
tionCPA and CallstackCPA domains. The transfer relation of
CallstackCPA calls the transfer relations of wrapper CPAs.
First, it obtains a new state of LocationCPA, then a new state
of CallstackCPA, and combines them together, thus we get the
new state of CompositeCPA.

Merge and stop operators are also a combination of the
wrapper ones. To merge two states of CompositeCPA, first,
LocationCPA states are merged, then CallstackCPA ones are
merged and finally they are combined into a next Compos-
iteCPA state. The stop operator works in the similar way: if
all wrapper CPAs stop the CompositeCPA stops as well.

Let us consider how the composition of CPAs analyzes the
following simple program (Fig. 2). In Fig. 3 there is a graph
of an analysis of the program.

1 int g(int a) {
2 int b = 0;
3 if (a == 0) {
4 b++;
5 }
6 return b;
7 }
8 int f() {
9 return 0;
10 }
11 int main() {
12 int t;
13 t = f();
14 g(t);
15 }

Fig. 2. Example of program

Fig. 3. Analysis graph. First number in the braces represents a state of
LocationCPA (a line number) and after that follows a callstack of functions.

The tool starts from the main function, then it analyses
function f, then goes to g. In this function it meets the
condition at line 3. It analyses two branches and gets the same
resulting states at line 5. It means that one state is covered by
another, so it continues the analysis with the only state.

5. IMPLEMENTATION

The implementation of the method contains two stages.
First of all, shared data is identified, then for every usage
of shared data a set of acquired locks is obtained. Fig. 4
represents these stages. A CPA configuration for Shared Data
Analyzer consists of functions which produce local data, e.g.
calloc(), malloc() and so on. We assume that pointers
returned by these functions point to local data, which can
not be shared in corresponding points of a program . A
configuration for Lock Analyzer includes description of locks
and annotations which are described in Section 5-C.

A. CPA configuration for Shared Data Analyzer

Shared Data Analyzer is used for collecting a list of shared
variables in every point of a program, see Fig. 5.

BAMCPA (Block Abstraction Memorization) [10] is respon-
sible for modularity of the analysis. If a function has been
already analyzed with some state before the call and a set of

Fig. 4. Stages of analysis

Fig. 5. Shared Data Analyser configuration

resulting states on return from the function were already stored,
the reanalysis of this function does not occur, the stored states
are used instead. We added to origin BAMCPA a possibility of
recursion handling and ways of interaction between BAMCPA
and our new CPAs.

ARGCPA (Abstract Reachability Graph) is responsible for
restoration of a path from any state to the initial one. It stores
parents and children for every state, so it can traverse all
reached states and reestablish the path.

CompositeCPA, LocationCPA and CallstackCPA have al-
ready been described.

LocalCPA is responsible for detecting locality of all vari-
ables accessible in a current point of a program. The transfer
operator should spread the sharedness of variables for assign-
ment operators and function calls. For example, if the pointer
b points to the shared memory and there is an assignment
a = b then the sharedness of memory *b is transferred to
the memory *a. After this assignement it is considered that
a also points to the shared memory. At merge points merge
operator joins results. In case of uncertainty the shared status
is chosen. Let us consider the following example:

if(condition) {
a = b;

} else {
a = c;

}

If b is local and c is shared, then the resulting status for
a is shared.

The result of this stage is a list of shared data at every
program location. If we do not exactly know the sharedness
we include corresponding data into the list, thus considering
it as shared.

B. CPA configuration for Lock Analyzer

Lock Analyzer is used for collecting a set of acquired locks
for every usage of shared data, provided by previous stage of
analysis.

Fig. 6. Lock Analyzer configuration

BAMCPA, ARGCPA, LocationCPA and CallstackCPA are
the same.

UsageCPA collects statistics of data usage. Transfer rela-
tion of UsageCPA identifies variables used in expressions for
read/write access, keeps a callstack and a set of acquired locks
for each usage.

At the end of analysis we obtain information about all
usages for every shared data. Each usage consists of:

• a set of acquired locks;

• a stack of function calls;

• a line number;

• a CFG edge type (a function call expression, etc.);

• a type of access (READ, WRITE).

LockCPA maintains a set of acquired locks. Its state holds
a set of locks acquired during program execution. Each lock
contains information about:

• name of the lock;

• counter of recursive acquires;

• function callstack for every acquire.

The transfer relation changes the state, which consists of a
set of acquired locks. When a function of acquiring a lock is
called, the corresponding lock is added to the lock set or the
counter is incremented. When a releasing function is called,
the the counter is decremented and if it becomes zero the lock
is removed from the set.

States of all CPAs are never merged. Analysis stops if a
state has been already analyzed.

C. Annotations

Annotations are used to configure the method to the specific
code. There are three classes of annotations:

• Annotations of influence functions on synchronization
primitives.

• Annotations of influence functions on shared data.

• Annotations of target data.

Let us consider the following chunk of code to explain the
first type of annotations:

int f() {
...
if (isGlobalPointer) {

lock();
}
(*pointer)++;
if (isGlobalPointer) {

unlock();
}

}

In this example the increase of the shared counter always
occurs under the lock. If it is a local pointer we do not need a
synchronization. The analysis considers four paths because it
takes if-then-else branches in both if-statements. Two of these
paths end with acquired lock, the other two end with empty
set of locks. The first pair is infeasible, because the conditions
in the if-statements are the same. So at the end the analysis
has two states of acquired lock sets: {lock} and {∅}, where
the first one is not reachable in the real execution.

Such situations do not often occur, but each of them offers
a significant number of false alarms, since the final state of the
function with acquired lock affects all further paths of analysis.
Annotations of functions are used to deal with such cases. It
is a way to tell analysis that a function is always releases or
acquires some lock.

In the given example it is enough to add annotation that
function f always release the lock.

Annotations describe functions in terms of LockCPA states.
After the function has been analyzed, the state is adjusted in
accordance with the annotation.

Currently 4 types of specifications are supported:

• Acquiring a lock — a function always acquires a lock.

• Releasing a lock — a function always releases a lock.

• Resetting a lock — if a lock can be acquired several
times recursively, a function finally releases it.

• Restoring a lock — a function can modify a set of
locks, but all changes should be forgotten at the end
of the function.

To this type of annotations one can also add the config-
uration of locks. It is possible to specify acquiring, releasing

and resetting functions, a depth of recursive acquiring. These
annotations are handled by LockCPA.

The next type of annotations describes the influence on
shared data. A function can return a local data or initialized
a pointer transferred as argument by local data. Also data can
become shared after function call. All these cases should be
specified by annotations to precise the analysis. Now only
functions provided local data are supported. These annotations
are handled by LocalCPA.

The third type of annotations is used to establish equality
of variables, so they can be regarded as the same data.
This is required, for example, for lists, where elements of
a list usually have equal variable names like next. If we do
not distinguish elements of different lists we get many false
alarms, because usages of different lists may be protected by
different lock sets. That is why we want to bind the variables
representing the elements of a list to the list. For this purpose
configuration contains functions which are used to work with
a list. For example, expression e = getElement(list)
binds variable e to variable list passed as a parameter. These
annotations are handled by UsageCPA.

The total number of annotations is not very big. There are
about 50 annotations of the first type and 20 annotations each
of the second and the third types.

6. TOOL INTEGRATION

We integrated the proposed method into Linux Driver
Verification (LDV Tools) developed within project for the
verification of Linux operating system device drivers (see
Fig. 7) [11].

Fig. 7. Integration in the LDV architecture

First, a given kernel of an operating system is prepared.
During this stage compiler calls are replaced by our command
extractor calls. Then a build command stream is extracted by
special scripts. This stream is transferred to Domain-Specific
C Verifier component. It instruments source code using locks
description. For example, it replaces macros used for acquiring
and releasing locks by calls of model functions, annotated in
the configuration, because macros can be expanded to very

Statistics General Unsafe
Global variables: 195 29

Simple: 122 23
Pointer: 73 6

Local variables: 3 0
Simple: 0 0
Pointer: 3 0

Structure fields: 118 24
Simple: 105 24
Pointer: 13 0

Total: 316 53

TABLE I. Example of one report for Linux driver floppy.ko

difficult command sequences, while model functions are easier
to analyze.

Then a model of environment is included. It is presented by
main function containing system calls and interrupt handlers
calls, which are supposed to be executed in parallel.

After all preparations a source code is analyzed by our data
race analyzer. It generates report containing a list of warnings
with detail information about each of them.

To visualize the warnings another component of LDV
Tools called Error Trace Visualizer is reused. When the tool
generates a warning about the data race, it must be shown to
the user. Moreover, the user should check if it is a false alarm
or a bug. Therefore, it is necessary to present visualization
of the error trace and its association with the source code.
The data race is represented by at least two usages with
disjoint sets of locks. Its error trace contains the function
callstacks for two usages with points of lock acquiring. Error
Trace Visualizer interprets data received from the verifier,
converts it and associates it with corresponding source code. To
represent the results the HTML-report is generated. The main
page of a report contains general statistics (Tab. I). There are
total numbers of variables of each of three categories: global,
local and structure fields and number of variables for which
warnings are generated. The pointer variable means the access
by pointer and simple one — the access to variable itself. Also
the report lists all found locks. After that there is a list of all
warnings. For each unsafe the report contains a pair of usages
with disjoint sets of locks.

An example of source code representation is shown in
Fig. 8. We emphasize again, that there is a model of parallelism
and two functions called from the main function are considered
to be executed in parallel.

Function print prints information about variable
global, and increase increments its value with lock
protection. There is a data race, because function increase
can write to the variable simultaneously with the check in
function print. So as a consequence of the race the printed
output message may be wrong. Our tool generates a warning
for variable global with error trace shown in Fig. 9. In
the first line the total number of usages is printed. Only two
of them are shown. The first usage means that the access
to global is in function call. The second one occurs in
assignment after acquiring the example_lock. The name
example_lock is chosen because the acquiring function
lock() has no arguments.

Also there is an option to generate source code coverage.

Fig. 8. Example of source code. Parallel execution of print() and
increase() can lead to a data race.

It shows the code which has been analyzed by the verifier and
its relation to the whole kernel code.

7. RESULTS

The tool was applied to a real time operating system kernel,
which has been already tested and has been used several
years in production. The amount of code was about 200 000
lines of code, but only about 50 000 lines were analyzed.
This is due to many functions was not included into main
function. We found 20 new data races acknowledged by the
developers. The number of warnings was 139. Without the
Shared Data Analyzer the number of warnings would be 378.
So this stage is very important. At the moment the large part
of false alarms are caused by inaccuracies in the analysis of
expressions. For instance, now the analysis does not properly
consider conditions in if-statements.

It takes about 3 minutes and 6 Gb of RAM for the run.
Also there was a pilot launch of the tool on Linux kernel 3.8 on
the drivers directory. The number of analyzed modules was
about 3500. The tool generated about 900 warnings. Several
of them were analyzed and one actual bug was found, but it
had been already fixed.

8. RELATED WORK

In our method we perform static analysis in contrast to dy-
namic analysis which has its own benefits. We are considering
only methods for analysis of C code, excluding, for example,
Java analyzers like [12]. The Locksmith method [6] is the
most similar. It is also based on the Lockset algorithm, but has
different approaches for the analysis of locks and shared data.
Basically it performs intraprocedural analysis with propagation

Fig. 9. Example of warning. Error trace with points of acquiring locks and
points of calling functions. Every point links to corresponding line on source
code (see Fig. 8)

of constraints which gives it context-sensitivity, but it does not
take into account path conditions. Locksmith uses the points
of thread creation to define when the parallel execution starts.
It operates with run-time memory locations (addresses) and
to establish the equality of data it builds data flow graph.
This way is more precise for basic data types, but it has
problems with casting, void* pointers and pointer arithmetic.
Our method operates with variable names and it works better
on kernel specific code, but generates more false positives for
user-level programs. The way of calculation of shared data
also has a difference. In Locksmith shared memory locations
are defined for all points in program once, but there are cases,
when the local data becomes shared after some actions. For
example, the memory is allocated by malloc() and then it is
assigned to a global pointer. Locksmith considers this memory
as always being shared even before assignment. Our method
allows to distinguish these cases. The Locksmith supports only
standard locks, as pthread_mutex_lock. It also builds a
data flow graph for arguments of functions, acquired a lock.
It means that the way of establishing the equality of locks is
more precise in case of simple programs.

Another tool which is based on the Lockset algorithm
is Relay [13]. It describes the changes in the locksets and
accesses to the memory locations relative to the function
entry point. The thread model is similar to our approach - all
functions are considered to be executed in parallel. But after
the analysis heuristics can be applied, which remove warnings
related to the inaccurate model. The data is symbolic L-Values,
which are defined as follows: a variable, a pointer to variable,
a field of a structure or pointer to another L-Value. So, the
definition of data is very similar to ours, but the sharedness is
different. For each program location every L-Value is mapped

to R-Value, which may be ⊥ (unassigned), > (unknown),
integers, the incoming (initial) value of some L-Value, and
a may-points-to set of L-Values. The data is the same (shared)
if the L-Values are equal or the other L-Value is included
in may-points-to set of current L-Value. Locks are objects,
which can be acquired and released by specified functions.
For every function the relative lockset is computed. It is a
pair of definitely acquired locks and possibly released locks.
An important note is that the locks are also data, relative to
function entry point. So, if a lock is an argument of function
call, it will be updated in terms of function caller variables.
Finally, for every function there is a set of accesses with
guarded locks and the effect of function, including the relative
lockset.

The method, proposed in [14] is focused on function
pointer analysis and a fast computation of must-aliases. There
are three thread models. The first one is similar to our model
- every function can be executed in parallel with other ones.
The second model is based on fork and join functions. The
parallelism starts at fork operation and finishes at join point.
The third model differs from previous one by absence of join
points and limitation of number of tasks at one thread. The
data are memory locations and the same locations are defined
as set of must aliases. The locks are also a set of must-aliases.

We do not consider methods of model checking in detail,
although many of them are used for data race detection([16],
[17], [18]). The main problem is its scalability. Most of them
are useful for applications with hundred of program locations.
The another strong limitation of such methods is suggestion
that threads interact with each other only by global variables.

9. CONCLUSION

In the paper we describe a new lightweight approach
for data race detection, which is implemented on top of
the CPAchecker tool. Our method considers the specifics of
operating system kernels, such as complex parallelism and syn-
chronization primitives, and active usage of pointer arithmetic.
One more feature is an ability to scale on large amounts of
source code. The main distinctions of suggested method are a
memory model, a model of parallelism and a way of shared
data determination.

The main problem of the method is a great amount of
false alarms. To deal with them we want to try an existing
method, called CEGAR (Counterexample Guided Abstraction
Refinement) [15] which takes into account conditions by
means of predicated abstraction. In case of data races CEGAR
algorithm should be modified to take into account that two
threads should be considered instead of one.

Also we want to apply the suggested method to the Linux
kernel.

REFERENCES

[1] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan
Lu, A Study of Linux File System Evolution, 11th USENIX Conference
on File and Storage Technologies (FAST ’13)

[2] Mutilin V.S., Novikov E.M., Khoroshilov A.V. Analysis of typical faults
in Linux operating system drivers. Trudy ISP RAN [The Proceedings of
ISP RAS], vol. 22, pp. 349–374, 2012 (in Russian).

[3] Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobalvarro,
Thomas Anderson Eraser: A Dynamic Data Race Detector for Multi-
threaded Programs ACM Transactions on Computer Systems, Vol. 15,
No. 4, November 1997, Pages 391–411.

[4] Gerlits E.A., Kuliamin V.V., Maksimov A.V., Petrenko A.K., Khoroshilov
A.V., Tsyvarev A.V. Testing of Operating Systems. Trudy ISP RAN [The
Proceedings of ISP RAS], vol. 26, pp. 73–107, 2014 (in Russian).

[5] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk
Effective Data-Race Detection for the Kernel Operating System Design
and Implementation (OSDI’10), 2010, USENIX.

[6] Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks. Locksmith: Prac-
tical Static Race Detection for C, ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 33(1):Article 3, January 2011.

[7] Polyvios Pratikakis, Jeffrey S. Foster, Michael Hicks. Locksmith:
Context-Sensitive Correlation Analysis for Race Detection, Proceedings
of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, pp. 320 - 331, ACM New York, 2006

[8] Thomas Witkowski, Nicolas Blanc, Daniel Kroening, Georg Weis-
senbacher, Model Checking Concurrent Linux Device Drivers, ASE’07,
November 4–9, 2007

[9] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz, Configurable
Software Verification: Concretizing the Convergence of Model Checking
and Program Analysis, ACM Transactions on Computer Systems, Vol.
15, No. 4, November 1997, Pages 391–411.

[10] Daniel Wonisch, Block Abstract Memorization for CPAchecker, TACAS
2012, LNCS 7214, pp. 531-533.

[11] Mutilin V.S., Novikov E.M., Strakh A.V., Khoroshilov A.V., Shved
P.E. Arkhitektura Linux Driver Verification [Linux Driver Verification
Architecture]. Trudy ISP RAN [The Proceedings of ISP RAS], vol. 20,
pp. 163-187, 2011 (in Russian).

[12] Mayur Naik, Alex Aiken, John Whaley Effective static race detection
for Java. PLDI ’06 Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation, 41, 6, pp. 308 -
319, 2006

[13] Jan Wen Voung, Ranjit Jhala, Sorin Lerner, RELAY: Static Race
Detection on Millions of Lines of Code. ESEC/FSE’07, 2007

[14] Kahlon V., Yang Y., Sankaranarayanan S., Gupta A.: Fast and accurate
static data-race detection for concurrent programs. In: CAV’07. LNCS,
vol. 4590, pp. 226-239. Springer (2007)

[15] Khoroshilov A.V., Mandrykin M.U., Mutilin V.S. Introduction to CE-
GAR — Counter-Example Guided Abstraction Refinement Trudy ISP
RAN [The Proceedings of ISP RAS], vol. 24, pp. 219-292, 2013 (in
Russian)

[16] C. Popeea, A. Rybalchenko. Threader: a verifier for multi-threaded
programs In Proceedings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS
2013), LNCS, vol. 7795, pp. 633-636, 2013.

[17] A. Gupta, C. Popeea, A. Rybalchenko. Predicate abstraction and refine-
ment for verifying multi-threaded programs In Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2011), pp. 331-344, 2011.

[18] A. Gupta, C. Popeea, A. Rybalchenko. Threader: a constraint-based
verifier for multi-threaded programs In Proceedings of the 23rd Interna-
tional Conference on Computer Aided Verification (CAV 2011), LNCS,
vol. 6806, pp. 412-417, 2011.

